ver1 2015

The Norwegian EPD Foundation

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804 ٥v

Owner of the declaration:	Glasopor AS
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	ÞÒÚÖËFGI HEHUÍ EÖÞ
Registration number:	ÞÒÚÖËFGI HEHJÎ ËÒÞ
ECO Platform reference number:	Ë
Issue date:	HFÈEFÈEEFÏ
Valid to:	HFÈEFÈ€GG(validity extended to 01.10.2022)
	-

Glasopor 10-60 (Cellular glass aggregate)

Glasopor AS

www.epd-norge.no

Glasopor

General information

Product:

Glasopor 10-60 (Cellular glass aggregate)

Program operator:

The Norwegian	The Norwegian EPD Foundation								
Post Box 5250	Majorstuen, 0303 Oslo								
Phone:	+47 23 08 80 00								
e-mail:	post@epd-norge.no								

Declaration number:

ÞÒÚÖËFGI HËHJÎ ËÒÞ

ECO Platform reference number:

Ë

This declaration is based on Product Category Rules:

CEN Standard EN 15804 serves as core PCR Requirements on the EPD for www.bau-umwelt.com Lightweight aggregates / Bulk granulate v. 30.07.2014

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturerinformation, life cycle assessment data and evidences.

Declared unit:

A1-A3: 1 m³ of Glasopor, bulk (180 kg/m³) to factory gate

Declared unit with option:

Owner of the declaration:

Glasopor AS Contact person: Phone: e-mail:

Svein Lund 61 21 36 50 / 907 75 233 <u>svein.lund@glasopor.no</u>

Manufacturer:

Glasopor AS Haslevangen 14, 0579 Oslo Phone: 23 17 39 80 e-mail: <u>svein.lund@glasopor.no</u>

Place of production:

Glasopor AS, Industrivegen 63, 2690 Skjåk

Management system:

TI sertificate no 1261: NS-ISO 9001, NS-ISO 14001, NS-ISO 50001, OHSAS 18001

Organisation no:

No 884 334 662

Issue date:

HFÈ€FÈ€€FÏ

Valid to:

Year of study:

2016

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

The EPD has been worked out by:

Mie Vold

Min Yolel

ウ Østfoldforskning

Approved

Håkon Hauan Managing Director of EPD-Norway

Functional unit:

Verification:

The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010

internal

external

Third party verifier:

sign Connederche Codal (Independent verifier approved by EPD Norway)

NEPD-1243-396-EN Glasopor 10-60 (Cellular glass aggregate) korr210218

Product

Product description:

Glasopor is a cellular glass aggregate made from recycled glass containers collected from households in Norway. After going through a glass sorting facility, the glass is milled to glass powder. After milling and mixing the glass is expanded 7-8 times in a kiln at temperatures of 900°C. The output of the kiln breaks by cooling into a granular material of 10-60 mm with dry bulk density of 180 kg/m3. The product can be used as thermal insulation and draining layer. It can also be used as light weight filling material.

Product specification:

Glasopor produced from waste fraction in a facility for sorting of used glass for recycling.

Materials	Share of product, [%]	Amount, recycled material [%]
Glass, waste fraction from recycling	> 80 %	100 %
Silicon carbide, waste from Silicon industry	< 2 %	100 %

LCA: Calculation rules

Declared unit:

A1-A3: 1 m³ of Glasopor, bulk (180 kg/m³) to factory gate

System boundary:

The system boundary of the EPD follows the modular structure in line with EN 15804.

This section describes the modules which are contained within the scope of this study.

As the scope of the assessment is up to the point at which the foam glass aggregate is manufactured modules A1-A3 have been considered in this LCA.

Data quality:

Raw material	Data quality	Data Source and description	Age of data	
Glass	Specific data	Waste fraction from glas recycling. Impacts from glass collection and sorting are allocated to recycled glass. Onpacts from drying and milling of the waste fraction for Glasopor production are from Glasopor in Fredrikstad.	Energy use for drying is year average for 2015. Energy use for milling is based on nine months in 2016	
Energy in Glasopor production	'n			
Use	Estimated consumption	Impacts from Glasopor production are from Glasopor, Skjåk.	Energy use for milling is based on six months in 2016	
Extraction, distribution and use, electricity	Data base	LCI for Norwegian Hydro Electricity, Ostfold Research	2012	
Transport				
Distances	Spesific	Glasopor	2013	
Extraction, infrastructure and combustion	Data base	Ecolnvent 3.2, adjusted for 100% load from Fredrikstad to Skjåk (return is also allways full)	2013	

Technical data:	Technical data:									
Typical property	Test method	Typical value								
Loose bulk density	NS-EN 1097-3	180 kg/m ³								
Particle density	NS-EN 1097-6	380 kg/m ³								
Thermal conductivity (dry)	NS-EN 12667	0,097 W/mK								
Thermal conductivity (wet)	NS-EN 12667	0,107 W/mK								

see: www.glasopor.no for more information

Market:

Norway

Reference service life, product:

Limited by the service life of the construction were the product is used.

Reference service life, building:

N/A

Allocation:

The allocation is made in accordance with the provisions of EN 15804. All incoming energy and water and waste production inhouse is allocated to Glasopor. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

LCA: Scenarios and additional technical information

Transport from production place to user (A4)

Туре	·	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Value (I/t)
Truck		53 %	Lorry <32 tonne	50	0,02 l/tkm	1

Additional technical information

Glasopor AS is a supplier of insulation and ground fillargs for all types of construction. The products are made of the waste fraction from recycled glass. The material has an indefinite service life and require no maintenance during use.

This product be re-excavated and used as filling for new contruction's service life.

The kilns are redesigned for electrical operation in May 2016. The company buys guarantees of origin for all electricity used both in Fredrikstad and in Skjåk.

Results

The results reflect the declared unit from cradle to factory gate (A1 to A3).

Syste	System boundaries (X=included, MND= module not declared, MNR=module not relevant)															
Pro	duct sta	age	Assen	nby stage		Use stage						End of life stage			Beyond the system boundaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
x	x	х	x	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental impact										
Parameter	Unit	A1	A2	A3	A1- A3	A4				
GWP	kg CO ₂ -eqv	2,27	3,70	1,00	6,96	0,79				
ODP	kg CFC11-eqv	2,00E-07	7,28E-07	8,02E-08	1,01E-06	1,56E-07				
POCP	kg C ₂ H ₄ -eqv	3,97E-04	6,04E-04	1,84E-04	1,19E-03	1,29E-04				
AP	kg SO ₂ -eqv	2,43E-04	1,32E-03	1,44E-03	3,01E-03	2,83E-04				
EP	kg PO₄ ³⁻ -eqv	6,87E-03	1,02E-02	5,10E-03	2,22E-02	2,19E-03				
ADPM	kg Sb-eqv	9,91E-07	7,10E-06	1,15E-05	1,96E-05	1,52E-06				
ADPE	MJ	40	59	7,80	107	12,55				
GWP Global	GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric									
photochemica	photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non									
fossil resourc	es: ADPE Abiotic der	pletion potentia	al for fossil re	sources						

Reading	evample.	۵n	E-03 =	Q 0 ³	10 ⁻³	- 0	nna
Reauling	example.	9,0	E-03 -	9,0	10	- 0	,009

Resource	Resource use											
Parameter	Unit	A1	A2	A3	A1-A3	A4						
RPEE	MJ	32	0,87	404	438	0,19						
RPEM	MJ	0,02	0,29	0,14	0,45	6,32E-02						
TPE	MJ	32	1,17	405	438	0,25						
NRPE	MJ	40	60	8,20	108	12,78						
NRPM	MJ	0	0	0,04	0,04	-						
TRPE	MJ	40	60	8,24	108	12,78						
SM	kg	180	0	0	180	-						
RSF	MJ	1,45E-05	0	1,83E-04	1,97E-04	-						
NRSF	MJ	-5,31E-07	0	-6,68E-06	-7,22E-06	-						
W	m³	0,00E+00	0,00E+00	0,00E+00	0,00	-						
RPEE Renew	able primary energy	resources use	d as energy	carrier; RPEM	Renewable	primary ener	gy resources	used as raw m	aterials; TPE			
Total use of r	enewable primary en	ergy resources	s; NRPE Non	renewable pr	imary energy	y resources u	sed as energ	y carrier; NRPI	VI Non			
renewable pri	mary energy resourc	es used as ma	aterials; TRP	E Total use of	non renewal	ble primary e	nergy resourc	ces; SM Use of	secondary			
materials; RS	F Use of renewable s	secondary fuel	s; NRSF Use	of non renew	able second	ary fuels; W	Use of net fre	sh water				

Reading example: $9,0 = -03 = 9,0^{*}10^{-3} = 0,009$

End of life - Waste										
Parameter	Unit	A1	A2	A3	A1- A3	A4				
HW	kg	3,62E-05	3,45E-05	3,58E-03	3,65E-03	7,38E-06				
NHW	kg	6,09E-02	5,47E+00	2,81E-01	5,81E+00	1,17E+00				
RW	kg	INA	INA	INA	INA	INA				
HW Hazardo	W Hazardous waste disposed: NHW Non bazardous waste disposed: RW Radioactive waste disposed									

Reading example: $9,0 \text{ E}-03 = 9,0^{*}10^{-3} = 0,009$

End of life - Output flow											
Parameter	Unit	A1	A2	A3	A1- A3	A4					
CR	kg	0	0	0	0	0					
MR	kg	1,19E-03	0,00E+00	2,36E-02	2,48E-02	0					
MER	kg	1,39E-05	0,00E+00	1,75E-04	1,89E-04	0					
EEE	MJ	0	0	0	0	0					
ETE	MJ	0	0	0	0	0					
CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported											
thermal energ	ау										

Reading example: $9,0 \text{ E}-03 = 9,0^{*}10^{-3} = 0,009$

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

Glasopor AS b^{*} y g^{*} arant[^] of origine of electricity for both their production locations. Data from LCI from 11 Norwegian Hydro electricity Power stations, representing 4,5 % of the total Norwegian Hydro electricity use is therefore used for production in Skjåk and for drying/milling in Fredrikstad.

Data source	Amount	Unit
Østfoldforskning	5,8	g CO ₂ -eqv/kWh

Dangerous substances

- The product contains no substances given by the REACH Candidate list or the Norwegian priority list
- The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.
- The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
- The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

Name	CAS no.	Amount	

Indoor environment

The product has no influence on indoor climate

Transport:

Transport from production site to central warehouse in Norway is 50 km

Carbon footprint

Carbon footprint has not been worked out for the product.

Glasopor

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
Vold Mie, 2016	Livsløpsdata for Glasopor® fra Skjåk etter innføring av elektrisk produksjon ved fabrikken - Bakgrunnsdata for miljøvaredeklarasjon
www.bau-umwelt.com	PCR Guidance-Texts for Building-Related Products and Services. From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU). Part.B: Requirements on the EPD for www.bau-umwelt.com Lightweight aggregates / Bulk granulate v. 30.07.2014

	Program operator	Phone:	ÉIÏÁGHÆÌÂIGÁIG
epd-norge.no The Norwegian EPD Foundation	V@ Á́Þ[¦, ^* ãæ), ÁÒÚÖÁ/2[`}åææã[}		
	Ú[•ÓÁÚ[¢ÁľGÍ€ÁTæbþ¦•č^}ÊÉEHEHÁU• [e-mail:][•cO^]å₿[¦*^₿[
	Þ[¦, æ	web	, , , È] å跱[¦* ^ဠ [
epd-norge.no	Publisher	Phone:	+47 23 08 82 92
	The Norwegian EPD Foundation		
	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
0	Norway	web	www.epd-norge.no
Glasopor	Owner of the declaration	Phone:	23 17 39 80
	Glasopor AS	Fax	
	Svein Lund	e-mail:	svein.lund@glasopor.no
	Haslevangen 14, 0579 Oslo	web	www.glasopor.no
🖒 Østfoldforskning	Author of the Life Cycle Assessment	Phone:	414 69 800
	Østfoldforskning AS	Fax	+47 69 34 24 94
	Mie Vold	e-mail:	mie@ostfoldforskning.no
	Stadion 4, 1671 Kråkerøy	web	www.ostfoldforskning.no